作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在信道盲均衡问题的研究中,根据BP神经网络的信道肓均衡算法存在收敛速度慢,易陷入局部极小值的缺陷,导致信道肓均衡效果差,信道误码率高.为克服BP神经网络的缺陷,提高均衡道肓均衡效果和降低误码率,利用遗传算法全局搜索能力强的优点对BP神经网络的缺陷进行改进,提出一种基于遗传神经网络的信道盲均衡算法.采用BP神经网络构建信道分类器,通过遗传算法优化神经网络权值,最终实现盲均衡.仿真结果表明,相对于传统BP神经网络盲均衡算法,遗传神经网络算法收敛速度快,误码率降低,能获得更好的收敛特性和均衡效果.
推荐文章
基于神经网络盲均衡算法的发展
盲均衡算法
神经网络
自适应均衡
一种基于模糊神经网络的盲均衡算法
模糊神经网络
信道估计
盲均衡
基于动量项前馈神经网络盲均衡算法
盲均衡
前馈神经网络
动量项
门控递归单元神经网络坐标变换盲均衡算法
盲均衡
门控递归单元
神经网络
代价函数
坐标变换
码间干扰
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 遗传优化神经网络算法在信道盲均衡中的应用
来源期刊 计算机仿真 学科 工学
关键词 盲均衡 神经网络 遗传算法 代价函数
年,卷(期) 2011,(11) 所属期刊栏目 网络与互连技术
研究方向 页码范围 145-147,167
页数 分类号 TP389.1
字数 3131字 语种 中文
DOI 10.3969/j.issn.1006-9348.2011.11.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜春艳 7 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (91)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (3)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(4)
  • 参考文献(0)
  • 二级参考文献(4)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
盲均衡
神经网络
遗传算法
代价函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
总被引数(次)
127174
论文1v1指导