作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高入侵检测系统的检测速度和效果,结合遗传算法提出了一种基于特征选择的无监督入侵检测方法.一方面利用改进的遗传算法作为搜索策略;一方面使用K均值聚类算法对提取特征后的数据进行聚类,并将类间离散度和类内离散度的相关比值作为特征子集的评价指标,从而实现最优特征子集的求解并用于无监督的入侵检测.实验结果表明,该方法由于解决了入侵检测的特征选择问题,与未采用特征选择的无监督入侵检测相比具有更好的性能.
推荐文章
基于特征选择的网络入侵检测方法
入侵检测
特征选择
机器学习
基于特征选择的网络入侵检测模型
网络入侵
检测模型
特征选择
分类器设计
主成分分析
网络安全
基于特征选择的网络入侵检测模型研究
特征选择
网络入侵
Fisher比
支持向量机
基于局部重构的无监督特征选择方法
局部线性嵌入
特征选择
局部重构
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征选择的无监督入侵检测方法
来源期刊 计算机工程与应用 学科 工学
关键词 遗传算法 K均值聚类 入侵检测 特征选择
年,卷(期) 2011,(26) 所属期刊栏目 网络、通信、安全
研究方向 页码范围 79-82
页数 分类号 TP393.08
字数 5565字 语种 中文
DOI 10.3778/j.issn.1002-8331.2011.26.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴剑 山东政法学院信息科学技术系 6 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (228)
参考文献  (6)
节点文献
引证文献  (7)
同被引文献  (28)
二级引证文献  (22)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(2)
  • 引证文献(0)
  • 二级引证文献(2)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遗传算法
K均值聚类
入侵检测
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导