基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了可靠地检出并识别焊缝缺陷,提出了一种基于特征评估和概率神经网络(PNN)的超声自动识别方法.该方法分别采用小波包和经验模式分解法对缺陷信号进行分解,提取原始信号和各分解信号的时域无量纲参数组成联合特征,并计算其评估因子,根据评估因子的大小选取敏感特征作为PNN的输入,从而实现不同焊缝缺陷类型的自动识别.通过对飞机起落架焊缝进行机上原位检测,实验结果表明,上述方法能够从大量的缺陷特征中筛选出敏感特征,克服了人为选择缺陷敏感特征的盲目性,减小了PNN规模,提高了分类准确率和检测效率.该方法在飞机的外场原位测试中具有很好的应用前景.
推荐文章
基于双概率神经网络的纹理图像识别
纹理识别
小波包变换
差异演化
双概率神经网络
基于小波概率神经网络的彩色纹理识别
纹理
小波变换
概率神经网络(PNN)
小波概率神经网络(WPNN)
纹理识别
基于HHT和概率神经网络的变压器局部放电故障识别
希尔伯特?黄变换
概率神经网络
指数聚类
模态分解
局部放电
变压器
基于新型深度神经网络的民机表面缺陷识别
民航飞机
表面缺陷识别
残差
Inception-net
深度神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征评估和概率神经网络的超声焊缝缺陷识别
来源期刊 测试技术学报 学科 工学
关键词 超声焊缝缺陷识别 小波包 经验模式分解 特征评估 概率神经网络
年,卷(期) 2012,(2) 所属期刊栏目 信号检测、算法与仿真
研究方向 页码范围 125-131
页数 分类号 TG115.28
字数 3820字 语种 中文
DOI 10.3969/j.issn.1671-7449.2012.02.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗飞路 国防科技大学机电工程与自动化学院 120 1913 24.0 36.0
2 王鹏 国防科技大学机电工程与自动化学院 28 126 7.0 10.0
3 罗诗途 国防科技大学机电工程与自动化学院 23 342 9.0 18.0
4 阮晴 国防科技大学机电工程与自动化学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (37)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (35)
二级引证文献  (20)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(4)
  • 引证文献(2)
  • 二级引证文献(2)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(10)
  • 引证文献(2)
  • 二级引证文献(8)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
超声焊缝缺陷识别
小波包
经验模式分解
特征评估
概率神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测试技术学报
双月刊
1671-7449
14-1301/TP
大16开
太原13号信箱
22-14
1986
chi
出版文献量(篇)
2837
总下载数(次)
7
总被引数(次)
13975
论文1v1指导