原文服务方: 山西农业大学学报(自然科学版)       
摘要:
以壶瓶枣为对象探讨用机器视觉和近红外光谱技术检测壶瓶枣内外品质.通过图像处理技术获取壶瓶枣投影面的边缘提取图像,然后使用最小外接矩形法求得图像的像素点个数,以此求得壶瓶枣投影面的面积.采用MSC对壶瓶枣近红外光谱进行预处理,然后分别采用偏最小二乘法(PLS)、主成分回归(PCR)和偏最小二成支持向量机(LS-SVM)3种建模方式对壶瓶枣可溶性固形物的含量进行预测.结果表明,使用LS-SVM模型获得了最优的预测结果,其预测集的相关系数和均方根误差分别为0.9901和0.328.研究表明,机器视觉结合近红外光谱技术能对壶瓶枣内外品质进行综合检测.
推荐文章
轻微损伤郎枣近红外光谱检测
郎枣
轻微损伤
预处理
平滑处理
标准正态变量校正
多元散射校正
扫描方式对鲜枣近红外光谱和硬度模型精度的影响
扫描方式
壶瓶枣
近红外光谱
模型精度
方差分析
基于可见/近红外光谱西葫芦硬度的无损检测模型的建立
可见/近红外光谱
硬度
西葫芦
无损检测
滑皮金桔糖度的近红外光谱无损检测技术
滑皮金桔
糖度
近红外光谱
S-G卷积平滑
偏最小二乘法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于机器视觉和近红外光谱的壶瓶枣无损检测
来源期刊 山西农业大学学报(自然科学版) 学科
关键词 机器视觉 近红外光谱 壶瓶枣 检测
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 571-573
页数 3页 分类号 S123|S665
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张淑娟 山西农业大学工学院 122 728 14.0 22.0
2 薛建新 山西农业大学工学院 25 114 6.0 9.0
3 孙海霞 山西农业大学工学院 20 46 4.0 5.0
4 周靖博 山西农业大学工学院 7 28 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (353)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (28)
二级引证文献  (12)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(5)
  • 参考文献(1)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
机器视觉
近红外光谱
壶瓶枣
检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西农业大学学报(自然科学版)
双月刊
1671-8151
14-1306/N
大16开
1957-01-01
chi
出版文献量(篇)
2896
总下载数(次)
0
相关基金
高等学校博士学科点专项科研基金
英文译名:
官方网址:http://std.nankai.edu.cn/kyjh-bsd/1.htm
项目类型:面上课题
学科类型:
论文1v1指导