为提高可见/近红外光谱无损检测寒富苹果可溶性固形物的检测精度,应用近红外漫反射光谱仪对寒富苹果进行扫描,对主成分回归(principal component regression,PCR)、偏最小二乘法(partial least squares,PLS)和改进偏最小二乘法(modified partial least squares,MPLS)三种建模方法进行比较,通过改变波长的范围、导数处理、去散射处理、标准化处理、加权多元离散校正及间隔平滑处理等光谱预处理,研究不同建模和光谱预处理方法对寒富苹果可溶性固形物可见/近红外光谱无损检测模型准确性的影响.结果表明,在780~1 100 nm范围内,采用MPLS,间隔点为2,平滑点为2,结合去散射处理和一阶求导处理所建立的寒富苹果可溶性固形物定标模型最好,其定标模型的校正交互验证标准误差(standard error of cross validation,SECV)为0.306,交互验证决定系数(determination coefficient of cross validation,尺三)为0.961;预测标准偏差(square error of prediction,SEP)、预测决定系数(determination coefficient of prediction,R;)、预测相对分析误差(residual predictive deviation,RPD)分别为0.357、0.944、4.967,表明模型具有良好的预测效果,适用范围广.建模方法、波长范围、导数处理、间隔平滑处理、去散射处理使模型误差分别降低了14.688%~53.407%、20.787%~33.146%、1.918%~13.123%、1.813%~7.553%、0~2.647%,建模方法和光谱预处理对模型优化的次序依次为:建模方法>波长范围>导数处理>间隔平滑处理>去散射处理.