原文服务方: 计算机测量与控制       
摘要:
为了达到准确、快速预测煤矿涌水量的目的,实现煤矿井下可靠、节能自动排水的需要,首先采用1-AGO对数据进行处理,得到规律性较强的累加数据,建立灰色预测模型,再利用径向基(RBF)神经网络对灰色预测模型结果进行预测,以作为其最终的预测值;利用某矿-600m工作面年均涌水量的历史数据进行建模,实验结果表明,灰色RBF模型在预测精度方面优于单一的灰色模型;其模型计算简便,减弱了数据的随机性及模型误差,提高了煤矿涌水量的预测精度.
推荐文章
煤矿井下涌水量灰色灾变预测
灾变预测
灰色系统
涌水量
基于BP神经网络的降雨充水矿井涌水量预测
BP神经网络
降雨入渗
矿井涌水量
预测模型
长沟峪煤矿
基于BP神经网络的孔隙充水矿井涌水量预测
BP人工神经网络
孔隙充水矿井
涌水量
预测模型
韩桥煤矿
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 煤矿涌水量的灰色RBF网络预测模型
来源期刊 计算机测量与控制 学科
关键词 涌水量 灰色预测 RBF 预测精度
年,卷(期) 2012,(2) 所属期刊栏目 自动化测试技术
研究方向 页码范围 300-302,310
页数 分类号 TP39
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭凤仪 辽宁工程技术大学电气与控制工程学院 134 1148 18.0 27.0
2 郭长娜 辽宁工程技术大学电气与控制工程学院 8 83 5.0 8.0
3 王洋洋 辽宁工程技术大学电气与控制工程学院 9 83 5.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (108)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (22)
二级引证文献  (20)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(10)
  • 参考文献(3)
  • 二级参考文献(7)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(4)
  • 引证文献(3)
  • 二级引证文献(1)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(8)
  • 引证文献(0)
  • 二级引证文献(8)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
涌水量
灰色预测
RBF
预测精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导