作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种最近邻分类的改良模型,综合考虑待分类数据的k近邻、所属的簇和整个训练数据集的类分布,充分利用局部、部分和全局三种类分布信息,从而具有抗噪声的性能.实验表明,提出的最近邻分类改良模型具有较好的抗噪声鲁棒性,而且分类的准确率明显高于传统的kNN分类算法.
推荐文章
基于小波和最近邻凸包分类器的人脸识别
小波变换
凸包
最近邻凸包分类
图像识别
人脸识别
基于多K最近邻回归算法的软测量模型
多K最近邻
高斯过程
K最近邻
软测量模型
自适应仿射传播聚类
主元回归
最近邻分类方法的研究
分类
k近邻算法
S近邻算法
分类准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最近邻分类的改良模型
来源期刊 广西大学学报(自然科学版) 学科 工学
关键词 分类 噪声数据 kNN算法
年,卷(期) 2012,(6) 所属期刊栏目 计算机与电子信息科学
研究方向 页码范围 1261-1266
页数 6页 分类号 TP399
字数 6144字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴昊 广西师范大学计算机科学与信息工程学院 13 34 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (1)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分类
噪声数据
kNN算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西大学学报(自然科学版)
双月刊
1001-7445
45-1071/N
大16开
广西南宁市大学路100号广西大学西校园学报编辑部
28832转3
1976
chi
出版文献量(篇)
4586
总下载数(次)
8
总被引数(次)
23980
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导