基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高混合动力汽车(HEV)电池荷电状态(SOC)的估计精度,提出了一种基于先进小波神经网络的HEV动力电池SOC估计算法.首先,建立了基于先进小波神经网络的电池SOC估计模型.然后,通过数学推导证明了先进小波神经网络的收敛性.最后,利用大量HEV动力电池在行驶过程中充放电的数据样本,对神经网络进行网络训练.仿真结果表明,所提出的估计算法与传统SOC估计算法相比,提高了电池SOC的估计精度,有效地将估计误差从±8%减小到±1.5%.
推荐文章
基于神经网络与UKF结合的锂离子电池组SOC估算方法
锂离子电池组
动力能源
无迹卡尔曼滤波器
神经网络
高级车辆仿真器
荷电状态
基于权值选择粒子滤波算法的锂离子电池SOC估计
Thevenin 模型
在线参数辨识
SOC 估计
权值选择粒子滤波算法
基于模型的锂离子电池SOC及SOH估计方法研究进展
锂离子电池
电池管理系统
电池模型
荷电状态估计
健康状态估计
基于滞环电压模型的锂离子电池SOC估计
荷电状态(SOC)
滞环电压
储能电站
迭代平滑可变滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于先进小波神经网络的HEV动力锂离子电池SOC估计
来源期刊 东南大学学报(英文版) 学科 工学
关键词 小波神经网络 荷电状态 混合动力汽车 动力锂离子电池
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 299-304
页数 分类号 TP273
字数 920字 语种 英文
DOI 10.3969/j.issn.1003-7985.2012.03.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付主木 河南科技大学电子信息工程学院 78 507 12.0 19.0
5 赵瑞 河南科技大学电子信息工程学院 4 32 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (2)
参考文献  (12)
节点文献
引证文献  (23)
同被引文献  (17)
二级引证文献  (6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(9)
  • 参考文献(9)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(10)
  • 引证文献(10)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波神经网络
荷电状态
混合动力汽车
动力锂离子电池
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(英文版)
季刊
1003-7985
32-1325/N
大16开
南京四牌楼2号
1984
eng
出版文献量(篇)
2004
总下载数(次)
1
总被引数(次)
8843
论文1v1指导