预测能力相对薄弱,已经成为制约PHM(Prognostics and Health Management)技术发展和应用的瓶颈.随着传感器和BIT (Built-in Test)设计技术的日益进步,采用序列分析的方法对复杂系统装备进行故障预测已经成为可能.在基于序列分析的预测方法研究中,径向基函数预测网络具有结构简单、学习速度快、具备非线性建模能力等诸多优点.为了改进其预测性能,在深入分析网络拓扑对模型性能及建模时间影响的基础上,综合考察了序列最佳线性自相关长度、建模精度和模型复杂度等多种因素,提出了基于偏自相关函数统计检测的输入层节点数目确定算法和基于BIC(Bayesian Information Criteria)准则的隐层节点数目确定算法,用以构建径向基函数预测网络;并对算法的有效性进行了分析.仿真结果表明,同传统建模算法相比较,由新算法构建的径向基函数预测网络具有最佳的预测性能,且建模时间不足传统算法的3%.