基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
分析了支持向量机的基本原理及算法,确定了航空兵部队油料消耗量预测模型的样本输入量,构造了航空兵部队作战油料消耗量预测函数,采用LibSVM-Matlab工具箱对模型进行编程求解,选用3个指标对预测结果进行评价。并以某空军航空兵部队油料消耗量为例,运用基于SVM的航空兵部队油料消耗量预测模型,对2009年演习的油料消耗量进行了预测,预测结果与实际值进行比较,预测精度高,为科学预测战场油料消耗量提供了科学定量的分析方法。
推荐文章
航空弹药平时消耗量的预测模型
航空弹药
消耗
多元线性回归
航空弹药平时消耗量预测模型对比
航空弹药
消耗量
预测模型
蒸发蒸腾量支持向量机预测
蒸发蒸腾量
统计学习理论
支持向量机
预测
支持向量机在时间序列预测中的应用
支持向量机
BP神经网络
时间序列预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 支持向量机在航空兵部队油料消耗量预测中的应用
来源期刊 重庆大学学报:自然科学版 学科 军事
关键词 支持向量机 航空兵部队 油料消耗量 预测消耗 预测模型
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 38-42
页数 分类号 E917
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱才朝 重庆大学机械传动国家重点实验室 142 1740 24.0 35.0
2 陆思锡 后勤工程学院军事油料应用与管理工程系 16 51 5.0 6.0
3 罗家元 重庆大学机械传动国家重点实验室 6 119 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (17)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (12)
二级引证文献  (7)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(6)
  • 参考文献(2)
  • 二级参考文献(4)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
航空兵部队
油料消耗量
预测消耗
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
总被引数(次)
85737
论文1v1指导