基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现对汽车排放污染物CO的实时检测,提出采用神经网络软测量技术,以BP神经网络基本原理为基础,引入LM优化算法。选用发动机运转参数中的转速和节气门开度为变量,建立面向LMBP神经网络的汽车排放污染物CO的检测模型,并对该神经网络进行学习训练和模拟验证。结果表明:该方法可行、有效,仿真结果非常接近实测数据,且LMBP算法收敛速度快、预测精度高。同时,也可将该神经网络模型应用于CO的实时控制中,提高控制的实时性和精度。
推荐文章
基于BP神经网络的燃煤锅炉大气污染物排放模型构建
燃煤锅炉
大气污染物
BP神经网络
脱硫塔
脱硝反应器
基于LM-PSO算法和BP神经网络的非线性预测控制
非线性系统
预测控制
LM算法
粒子群算法
BP神经网络
基于GA-LM-BP神经网络的锂离子电池预测研究
BP神经网络
锂离子电池
预测
基于LM优化算法的BP神经网络目标识别方法
瞬态特性
奇异值特征
LM算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LM算法的BP神经网络对汽车排放污染物的预测
来源期刊 重庆理工大学学报:自然科学 学科 交通运输
关键词 CO LM算法 神经网络 检测模型
年,卷(期) 2012,(7) 所属期刊栏目 车辆工程
研究方向 页码范围 11-16
页数 6页 分类号 U464.1
字数 3076字 语种 中文
DOI 10.3969/j.issn.1674-8425-B.2012.07.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 简晓春 重庆交通大学交通运输学院 54 222 9.0 12.0
2 王利伟 重庆交通大学机电与汽车工程学院 3 23 2.0 3.0
3 闵峰 重庆交通大学交通运输学院 3 24 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (100)
参考文献  (15)
节点文献
引证文献  (13)
同被引文献  (37)
二级引证文献  (8)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(9)
  • 参考文献(2)
  • 二级参考文献(7)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(8)
  • 参考文献(4)
  • 二级参考文献(4)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(4)
  • 引证文献(4)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(6)
  • 引证文献(2)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
CO
LM算法
神经网络
检测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导