基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
GDP时间序列具有线性和非线性的双重特征,所以传统统计预测方法、神经网络方法和集成预测方法都在预测分析时准确性不高,误差较大.文章提出由GDP时间序列,找出只具有非线性特征的GDP年增量百分比序列,以此建立基于BP的预测模型,对我国的GDP进行预测,仿真实验表明,改进的BP模型预测准确率明显优于目前的ARIMA-BP集成模型及单一BP模型的预测准确率,从而证实了改进的BP模型用于GDP预测的有效性.
推荐文章
基于改进神经网络的GDP时间序列预测
BP神经网络
GDP预测
准确率
基于改进BP算法的软件缺陷预测模型研究
缺陷预测模型
模拟退火算法
JCUDA技术
BP算法
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于改进BP网络的空调系统负荷预测
人工神经网络
空调负荷预测
BP网络
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进BP的GDP预测研究
来源期刊 计算机与数字工程 学科 经济
关键词 BP神经网络 GDP 预测
年,卷(期) 2012,(1) 所属期刊栏目 算法与分析
研究方向 页码范围 49-50,53
页数 分类号 F224.9
字数 1481字 语种 中文
DOI 10.3969/j.issn.1672-9722.2012.01.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁娜 咸宁学院数学与统计学院 33 127 6.0 10.0
2 张吉刚 咸宁学院数学与统计学院 32 137 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (156)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (30)
二级引证文献  (10)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(8)
  • 参考文献(3)
  • 二级参考文献(5)
2008(7)
  • 参考文献(5)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
BP神经网络
GDP
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导