作者:
原文服务方: 微电子学与计算机       
摘要:
研究了一维时间序列信号识别的问题.针对基于混合高斯模型的隐马尔科夫(HMM)编码准确率低的问题,提出了一种利用多个支持向量机构造混合支持向量机,从而为隐马尔科夫模型提供更精确的观测值编码和发生矩阵,能有效的提高HMM在语音信号识别或者文字识别中的准确率.本方法可以应用到语音识别,文字识别以及生物信息处理等领域.
推荐文章
一种时间序列动态聚类的算法
时间序列
关键点
兰氏距离
模糊聚类算法
动态聚类
基于局部线性嵌入的时间序列聚类
时间序列聚类
维数约简
主成分分析
分段聚合近似
局部线性嵌入
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
一种基于Normal矩阵的时间序列聚类方法
时间序列聚类
社团结构
复杂网络
Normal矩阵
相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用SVM的聚类算法在时间序列信号识别中的应用
来源期刊 微电子学与计算机 学科
关键词 隐马尔科夫模型 支持向量机 神经网络
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 182-184
页数 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪永涛 安徽财贸职业学院电子信息系 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (7)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
隐马尔科夫模型
支持向量机
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导