作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统RBF神经网络在网络流量预测过程中存在收敛速度慢、极易出现局部最优等缺点,从而导致预测精度低.采用蚁群算法优化RBF神经网络参数来进行网络流量预测.利用蚁群优化算法来训练RBF神经网络的基函数宽度和中心,简化网络结构,加快收敛速度,防止局部最优的出现,改善RBF神经网络的泛化能力.实验结果表明,相对于GA-RBF以及PSO-RBF流量预测模型,模型预测准确度更高,能够很好地描述网络流的变化规律.具有泛化能力强、稳定性良好的特点,在网络流量预测中有一定的实用价值.
推荐文章
基于RBF算法的机房网络流量预测
神经网络
网络流量
预测RBF算法
BP算法
组合神经网络的网络流量预测研究
网络流量
遗传算法
神经网络
预测
基于蚁群算法优化BP神经网络的政务云网络态势预测研究
政务云
主动防御
BP神经网络
蚁群算法
态势预测
预测精度
蚁群优化神经网络的网络流量混沌预测
网络流量
蚁群优化算法
BP神经网络
混沌预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蚁群算法优化RBF神经网络的网络流量预测
来源期刊 科学技术与工程 学科 工学
关键词 RBF神经网络 蚁群算法 基函数 网络流量预测
年,卷(期) 2012,(34) 所属期刊栏目 论文
研究方向 页码范围 9238-9242
页数 5页 分类号 TP393.07
字数 2578字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 廖金权 重庆电子工程职业学院物联网学院 39 51 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (235)
参考文献  (14)
节点文献
引证文献  (5)
同被引文献  (18)
二级引证文献  (11)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(9)
  • 参考文献(1)
  • 二级参考文献(8)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(10)
  • 参考文献(4)
  • 二级参考文献(6)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(0)
  • 二级引证文献(4)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
RBF神经网络
蚁群算法
基函数
网络流量预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导