作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究电力负荷准确预测问题,电力负荷与影响因子之间呈现复杂非线性关系,传统预测方法无法刻画其变化规律,预测精度低.为提高电力负荷预测精度,提出一种采用遗传优化支持向量机的电力负荷预测模型.采用最小二乘支持向量机的非线性逼近能力去描述电力负荷与影响因子间的复杂非线性关系,并采用自适应遗传算法优化最小二乘支持向量机的参数.采用某省1990~2008年电力负荷数据仿真测试,结果表明,遗传优化支持向量机提高了电力负荷的预测精度,预测平均误差低于其它对比模型,电力负荷预测提供了一种新的研究思路和途径.
推荐文章
应用小波变换和支持向量机的商业电力负荷预测
商业电力
负荷预测
支持向量机
小波分解
节能
数据采集系统
粒子群算法
基于支持向量机回归的电力负荷预测研究
结构风险最小化
支持向量机
支持向量回归
电力负荷预测
神经网络
NRS和PSO算法优化最小二乘支持向量机的短期电力负荷预测
短期电力负荷预测
邻域关系
属性约简
最小二乘支持向量机
粒子群算法
预测精度
基于支持向量机的短期负荷预测
电力系统负荷
短期预测
支持向量机
网格法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 遗传优化支持向量机在电力负荷预测中的应用
来源期刊 计算机仿真 学科 工学
关键词 最小二乘支持向量机 自适应遗传算法 电力负荷 预测
年,卷(期) 2012,(3) 所属期刊栏目 能源领域仿真
研究方向 页码范围 348-350,397
页数 分类号 TK16
字数 3082字 语种 中文
DOI 10.3969/j.issn.1006-9348.2012.03.086
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 庄新妍 14 27 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (254)
参考文献  (10)
节点文献
引证文献  (16)
同被引文献  (47)
二级引证文献  (67)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(6)
  • 参考文献(2)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(8)
  • 参考文献(2)
  • 二级参考文献(6)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(5)
  • 引证文献(4)
  • 二级引证文献(1)
2014(10)
  • 引证文献(6)
  • 二级引证文献(4)
2015(10)
  • 引证文献(1)
  • 二级引证文献(9)
2016(11)
  • 引证文献(0)
  • 二级引证文献(11)
2017(19)
  • 引证文献(2)
  • 二级引证文献(17)
2018(13)
  • 引证文献(1)
  • 二级引证文献(12)
2019(13)
  • 引证文献(2)
  • 二级引证文献(11)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
最小二乘支持向量机
自适应遗传算法
电力负荷
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
总被引数(次)
127174
论文1v1指导