原文服务方: 计算机测量与控制       
摘要:
BP算法在故障诊断领域已取得广泛应用,但其存在收敛速度慢且容易陷入局部最小值的缺陷,限制了其进一步的发展;ACO (Ant colony optimization)算法是一种模拟进化算法,已很好地应用于解决旅行商和资源两次分配等经典的优化问题,具有启发式收敛、正反馈以及分布式计算等优点;为此,将ACO算法引入BP算法故障诊断方法中,使用ACO算法对BP网络中的参数即权值、阈值以及学习率等进行优化,定义了一种结合ACO算法和BP算法能对故障进行诊断的新算法,并将其应用于具体的故障诊断实例中,最后,通过100组样本中的95组进行训练,并对剩余5组进行故障诊断,实验证明结合ACO算法和BP算法的新算法较传统的仅使用BP算法的诊断方法具有收敛速度快、诊断精确高以及训练性能好的优点.
推荐文章
基于CPLD和BP算法的模拟电路故障诊断
故障诊断
模拟电路
BP神经网络
CPLD
空间电源系统的面向冲突故障诊断推理算法
故障诊断
电源系统
层级结构
冲突集
基于BP算法和Petri网的柔性制造系统故障诊断
故障诊断
训练
神经网络
学习
Petri网
基于故障树和模糊推理的故障诊断研究
故障树分析
模糊推理
专家系统
智能故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP算法和ACO算法的故障诊断推理研究
来源期刊 计算机测量与控制 学科
关键词 故障诊断 BP算法 ACO算法 权值
年,卷(期) 2012,(6) 所属期刊栏目 自动化测试技术
研究方向 页码范围 1460-1462,1466
页数 分类号 TP319
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (11)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (16)
二级引证文献  (14)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(7)
  • 引证文献(2)
  • 二级引证文献(5)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
故障诊断
BP算法
ACO算法
权值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导