原文服务方: 微电子学与计算机       
摘要:
结合主成分分析(PCA)和K均值聚类算法(K-means)的特点,本文提出了一种对卫星遥感图像进行颜色特征提取的PCA-K-means算法.该算法去除了图像的R、G、B之间的相关性,在动态聚类的基础上,采用基于区域分类的空间一致性原则合并空间信息,使得该方法能高效的描述卫星图像的颜色特征.实验结果表明,该方法识别性能好,准确度高,是对多频谱遥感图像的颜色特征提取的一种有效的方法.
推荐文章
基于Matlab GUI的服装颜色特征提取系统设计
服装颜色
特征提取
GUI界面
系统设计
主成分分析
K?means法
基于PCA方法的强化木地板表面图像特征提取
强化木地板
主成分分析
图像特征
特征提取
基于矢量图形特征提取的遥感图像分类器
矢量图形特征
知识库
图像分类器
基于CCA的图像语义特征提取的分析与研究
图像语义
典型相关分析
局部二值模式
特征参数
特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA-K-means的卫星遥感图像的颜色特征提取技术
来源期刊 微电子学与计算机 学科
关键词 PCA K-means 卫星遥感图像 颜色特征提取
年,卷(期) 2012,(10) 所属期刊栏目
研究方向 页码范围 64-68
页数 分类号 TP751
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (77)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (6)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(7)
  • 参考文献(1)
  • 二级参考文献(6)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(10)
  • 参考文献(2)
  • 二级参考文献(8)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
PCA
K-means
卫星遥感图像
颜色特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导