基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现对水力旋流器的全面设计,建立了3层BP神经网络模型,该模型可根据分离粒度、生产能力、底流质量浓度等值,选择合适的水力旋流器.经10组数据测试,选型误差为:底流口直径10.43%,溢流口直径7.51%,插入深度17.86%,入料压力20.24%,选型精度高于传统方法.该模型既可用于设备选型,也可用于优化旋流器参数.选择合适的水力旋流器分级加重质,制备得到的粗、细两产品分别满足湿法、干法对加重质要求,对我国选煤业发展有重大意义.
推荐文章
人工神经网络专家系统在门窗选型中的应用
神经网络
专家系统
BP网络
门窗选型
基于人工神经网络的CAD技术
人工神经网络
CAD技术
基于分布估计算法的人工神经网络优化设计
进化计算
人工神经网络
遗传算法
分布估计算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工神经网络的水力旋流器选型及优化
来源期刊 煤矿机械 学科 工学
关键词 BP神经网络 磁铁矿粉 选型 水力旋流器
年,卷(期) 2012,(11) 所属期刊栏目 试验·研究
研究方向 页码范围 69-70
页数 分类号 TD455
字数 1704字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈秋波 海南大学环境与植物保护学院 4 38 3.0 4.0
2 冯建成 海南大学环境与植物保护学院 26 97 6.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (14)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (0)
1917(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
磁铁矿粉
选型
水力旋流器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
总被引数(次)
87205
论文1v1指导