基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This study explores the least square support vector and wavelet technique (WLSSVM) in the monthly stream flow forecasting. This is a new hybrid technique. The 30 days periodic predicting statistics used in this study are derived from the subjection of this model to the river flow data of the Jhelum and Chenab rivers. The root mean square error (RMSE), mean absolute error (RME) and correlation (R) statistics are used for evaluating the accuracy of the WLSSVM and WR models. The accuracy of the WLSSVM model is compared with LSSVM, WR and LR models. The two rivers surveyed are in the Republic of Pakistan and cover an area encompassing 39,200 km2 for the Jhelum River and 67,515 km2 for the Chenab River. Using discrete wavelets, the observed data has been decomposed into sub-series. These have then appropriately been used as inputs in the least square support vector machines for forecasting the hydrological variables. The resultant observation from this comparison indicates the WLSSVM is more accurate than the LSSVM, WR and LR models in river flow forecasting.
推荐文章
基于WAVELET-GARCH组合方法的中国保险深度分析
小波
趋势项
广义自回归条件异方差
预测
Least-Squares及Galerkin谱元方法求解环形区域内的泊松方程
Least-Squares变分
Galerkin变分
谱元方法
Poisson方程
极坐标系
一种基于Wavelet-Radon变换的宽带双曲调频信号检测方法
双曲调频
Wavelet-Radon变换
信号检测
水下信号处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Time Series Forecasting Using Wavelet-Least Squares Support Vector Machines and Wavelet Regression Models for Monthly Stream Flow Data
来源期刊 统计学期刊(英文) 学科 数学
关键词 RIVER Flow Time Series Least SQUARE Support MACHINES WAVELET
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 183-194
页数 12页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RIVER
Flow
Time
Series
Least
SQUARE
Support
MACHINES
WAVELET
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导