基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对以往飞机发动机故障诊断方法由于故障样本少而导致的诊断精度低,提出了一种基于最小二乘支持向量机(least squares support vector machine,LSSVM)的飞机发动机故障诊断方法.首先,给出了基于LSSVM对飞机发动机进行故障诊断的模型;然后,为了提高LSSVM的诊断性能,采用改进的粒子群算法对LSSVM的参数进行训练,并定义了最终基于改进粒子群优化SVM的具体诊断算法;最后,通过飞机发动机故障诊断实例仿真实验证明了文中方法能正确地实现故障分类,具有较高的故障诊断精度,且与其他方法相比,具有较优的适应度和较快的收敛速度.
推荐文章
基于粒子群神经网络的发动机故障诊断
粒子群
神经网络
汽车发动机
故障诊断
基于粒子群优化LSSVM的模拟电路故障诊断方法
模拟电路
故障诊断
粒子群优化
最小二乘支持向量机
基于PNN的飞机发动机故障诊断研究
概率神经网络
飞机发动机
故障诊断
基于特征优化与改进 KNN 的航空发动机故障诊断
航空发动机
故障诊断
特征优化算法
改进KNN算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群优化LSSVM的飞机发动机故障诊断
来源期刊 实验技术与管理 学科 航空航天
关键词 飞机发动机 故障诊断 支持向量机 粒子群算法
年,卷(期) 2013,(2) 所属期刊栏目 实验技术与方法
研究方向 页码范围 54-57
页数 4页 分类号 V23
字数 4070字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (73)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (32)
二级引证文献  (10)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
飞机发动机
故障诊断
支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
实验技术与管理
月刊
1002-4956
11-2034/T
大16开
北京清华大学10号楼2层
1963
chi
出版文献量(篇)
13770
总下载数(次)
48
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导