基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机方法是流行的数据分类方法,但支持向量机方法对稀有类的分类能力不强.针对稀有类数据的多超平面支持向量机是一种基于支持向量机方法的稀有点类分类方法,与支持向量机相似,使用超平面进行分类.与支持向量机不同的是,SVM_MH要求稀有类点在所有超平面正侧的交集中.SVM_MH对稀有类的分类要求更严格,而对非稀有类的条件相对宽松.支持向量机方法可以看作是一个特殊的SVM_MH.核函数在稀有类支持向量机中仍然适用.
推荐文章
一种改进的模糊多类支持向量机算法
支持向量机
统计学习理论
多类分类
模糊隶属函数
一种新的模糊支持向量机多分类算法
支持向量机
模糊支持向量机
一对多组合
隶属函数
多分类算法
一种新的支持向量机多类分类方法
支持向量机
分类
二叉树
迭代算法
一种新的模糊支持向量机算法
隶属度
支持向量机
模糊K近邻
模糊支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种针对稀有类支持向量机的新算法
来源期刊 复旦学报(自然科学版) 学科 数学
关键词 支持向量机 超平面 稀有类 分类
年,卷(期) 2013,(2) 所属期刊栏目 数学
研究方向 页码范围 198-206
页数 分类号 O241.7
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高卫国 复旦大学数学科学学院 10 48 3.0 6.0
2 徐凤芳 复旦大学数学科学学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (4)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量机
超平面
稀有类
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
复旦学报(自然科学版)
双月刊
0427-7104
31-1330/N
16开
上海市邯郸路220号
4-193
1955
chi
出版文献量(篇)
2978
总下载数(次)
5
总被引数(次)
22578
论文1v1指导