基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着风电大规模的接入电网,风电对电网的影响越来越大。由于风电出力具有随机性、间歇性和不可控性,导致风电对电网调度运行带来巨大的挑战。为了充分利用风电,必须将风电由未知变为基本已知,提高对风电出力的预测精度。提出一种基于帝国主义竞争算法的神经网络( ICA-NN)方法来提高短期风功率预测的精度。在该方法中,首先,建立一个基于多层感知器( MLP)人工神经网络的风速预测模型,然后,用帝国主义竞争算法优化神经网络中的权值。将该预测方法应用于新疆某风电场,验证了该方法应用于短期风功率预测的有效性,证明了该方法可以提高短期风功率预测的精度。
推荐文章
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ICA-NN的短期风功率预测研究
来源期刊 四川电力技术 学科 工学
关键词 帝国主义的竞争算法-神经网络 数值天气预报 短期风功率预测 风电场
年,卷(期) 2013,(5) 所属期刊栏目 基金项目
研究方向 页码范围 5-8
页数 4页 分类号 TM714
字数 2821字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚秀萍 新疆大学电气工程学院 71 563 13.0 20.0
3 王维庆 新疆大学电气工程学院 270 1957 20.0 32.0
6 周专 新疆大学电气工程学院 14 120 6.0 10.0
7 申盛召 新疆大学电气工程学院 5 19 2.0 4.0
8 任华 新疆大学电气工程学院 6 56 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (78)
共引文献  (993)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(3)
  • 参考文献(0)
  • 二级参考文献(3)
1985(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
帝国主义的竞争算法-神经网络
数值天气预报
短期风功率预测
风电场
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川电力技术
双月刊
1003-6954
51-1315/TM
大16开
四川省成都市高新区锦晖西二街16号四川电科院媒体业务中心
1978
chi
出版文献量(篇)
3021
总下载数(次)
2
总被引数(次)
10921
论文1v1指导