内圈点蚀、外圈压痕和滚动体磨损是滚动轴承常见典型故障,为实现其快速、准确诊断,提出基于振动信号局部均值分解(local mean decomposition,简称LMD)的PF分量能量特征和神经网络相结合的滚动轴承诊断方法.对振动信号进行局部均值分解,将其分解为若干个乘积函数(product function,简称PF)分量之和,以获得的PF分量能量特征作为神经网络输入进行滚动轴承的故障类型的识别,同时引入遗传算法对神经网络结构参数进行优化,提高故障识别诊断速度和准确率.结果表明,该方法用于轴承典型故障诊断有较高的诊断速率和故障识别率.