基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将最小二乘支持向量机(LS-SVM)引入空调负荷预测中,在Fortran软件平台上建立LS-SVM空调负荷预测模型,并将其应用于绵阳一栋办公类建筑的空调负荷预测中.试验表明所提出的方法预测精度较高,运算简单,收敛速度快,具有较强的可行性和实用性.
推荐文章
最小二乘支持向量机的短期负荷多尺度预测模型
短期负荷
多尺度预测
多孔算法
最小二乘支持向量机
NRS和PSO算法优化最小二乘支持向量机的短期电力负荷预测
短期电力负荷预测
邻域关系
属性约简
最小二乘支持向量机
粒子群算法
预测精度
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
混沌最小二乘支持向量机的短期风功率预测
混沌
LS-SVM
风功率预测
相空间重构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最小二乘支持向量机(LS-SVM)在短期空调负荷预测中的应用
来源期刊 建筑节能 学科 工学
关键词 最小二乘支持向量机 短期空调负荷 预测 fortran软件建模
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 56-58
页数 分类号 TU831
字数 2475字 语种 中文
DOI 10.3969/j.issn.1673-7237.2013.02.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐中华 44 227 10.0 12.0
2 靳俊杰 7 64 4.0 7.0
3 唐莉 6 40 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (76)
参考文献  (7)
节点文献
引证文献  (13)
同被引文献  (42)
二级引证文献  (38)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(12)
  • 参考文献(0)
  • 二级参考文献(12)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(9)
  • 参考文献(0)
  • 二级参考文献(9)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(12)
  • 引证文献(5)
  • 二级引证文献(7)
2018(11)
  • 引证文献(2)
  • 二级引证文献(9)
2019(16)
  • 引证文献(1)
  • 二级引证文献(15)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
最小二乘支持向量机
短期空调负荷
预测
fortran软件建模
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
建筑节能
月刊
1673-7237
21-1540/TU
大16开
沈阳市和平区光荣街65号
8-107
1973
chi
出版文献量(篇)
5991
总下载数(次)
8
论文1v1指导