基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主成分分析(PCA)已经广泛应用于计算机视觉中,但是传统的基于L2范数的PCA对异常值和特征噪声(比如有遮挡的图像)敏感.基于L1范数的PCA(L1-PCA)相比基于L2范教的PCA更具鲁棒性,并且可以克服对异常值和特征噪声敏感的问题.然而,在应用L1-PCA算法时,其算法的优化非常关键.本文针对这一问题,提出基于增强拉格朗日乘子的L1-PCA的优化算法并将其应用于处理有遮挡图像的重构,通过在Yale人脸数据库的实验测试表明所提出的算法有效.数值和可视化的实验结果都表明优化的L1-PCA优于传统PCA.
推荐文章
基于L1范数改进的自回归算法及分类应用
自回归密度估计
正则化
波利亚科夫平均
图片分类
基于L1范数主成分分析的颅脑图像恢复
脑图像恢复
主成分分析
L1范数
稀疏表示
基于L1范数的形状快速匹配算法
内距离形状上下文
轮廓点分布直方图
地球移动距离
L1范数
形状检索
基于一种非凸罚函数的稀疏主成分分析方法
稀疏主成分分析
阈值迭代算法
非凸罚函数
稀疏信息处理
收缩算子
临近算子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于L1范数的主成分分析优化算法及应用
来源期刊 小型微型计算机系统 学科 工学
关键词 主成分分析 L1-PCA 增强拉格朗日乘子 图像重构
年,卷(期) 2013,(1) 所属期刊栏目 图形、图像技术与其它
研究方向 页码范围 173-176
页数 4页 分类号 TP391
字数 3964字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 樊晓平 中南大学信息科学与工程学院 236 3229 28.0 45.0
2 廖志芳 中南大学软件学院 65 468 12.0 19.0
3 刘丽敏 中南大学信息科学与工程学院 13 89 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (24)
参考文献  (9)
节点文献
引证文献  (3)
同被引文献  (1)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(6)
  • 参考文献(2)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主成分分析
L1-PCA
增强拉格朗日乘子
图像重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导