基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于非负矩阵分解(NMF)和最小二乘支持向量机(LS-SVM)的肖像漫画生成算法.在训练阶段,利用非负矩阵分解来对夸张特征空间数据降维,运用最小二乘支持向量机(LS-SVM)统计学习夸张漫画与人脸之间的关系,建立形状夸张模型.在应用阶段,利用AAM算法提取人脸特征点,形状夸张模型计算出相应的漫画特征点数据,经过图像变形和风格化即可得到最终的肖像漫画.算法实验表明,该算法可以合理地夸张主要特征并避免过度变形.
推荐文章
参数化的肖像漫画生成算法
漫画
肖像
夸张
参数化
基于微粒群算法的LS-SVM时间序列预测
支持向量机
微粒群算法
时间序列预测
超平面空间
基于改进核LS-SVM算法的螺丝锁附结果分类研究
螺丝锁附
LS-SVM
分类
泰勒展开
参数选取
基于LLE和LS-SVM的人脸识别方法
人脸识别
主成分分析
局部线性嵌套
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于NMF和LS-SVM的肖像漫画生成算法研究
来源期刊 电视技术 学科 工学
关键词 肖像漫画 最小二乘支持向量机 模式识别 非负矩阵分解
年,卷(期) 2013,(19) 所属期刊栏目 视频应用与工程
研究方向 页码范围 233-236
页数 4页 分类号 TN911.73
字数 2673字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨士颖 上海大学影视艺术技术学院 7 24 2.0 4.0
2 王海君 上海大学影视艺术技术学院 2 5 1.0 2.0
3 王雁飞 上海大学影视艺术技术学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肖像漫画
最小二乘支持向量机
模式识别
非负矩阵分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导