作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
金融时间序列数据的预测是商业领域的热点问题,债券市场又是金融市场的一个重要组成部分,因此对债券数据进行准确的预测,对金融投资决策与风险管理都具有特别重要的意义.基于近期样本数据远比早期重要的特点,以及兼顾训练样本数据时所需的局部性和全局性,通过分别赋予高斯径向基核和多项式核随时间动态调整的权重值,将两者组合起来构造出了一个新的组合核函数以提高模型的预测准确度.研究表明,与单个核函数相比,新构造的组合核函数具有更优越的性能.
推荐文章
支持向量机在时间序列预测中的应用
支持向量机
BP神经网络
时间序列预测
基于支持向量机的害虫多维时间序列预测
多维时间序列
支持向量机
害虫预测
非线性
基于小波分析与支持向量机的时间序列预测
小波分析
多尺度分解
去噪
支持向量机
时间序列预测
基于时间序列的支持向量机在股票预测中的应用
支持向量机(SVM)
时间序列
股票预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的债券时间序列预测
来源期刊 数字技术与应用 学科 工学
关键词 支持向量机 债券数据预测 组合核函数
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 191
页数 分类号 TP183
字数 1953字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王芳芳 杭州电子科技大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
支持向量机
债券数据预测
组合核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
论文1v1指导