基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于机场噪声的预测,针对绘制等值线方法预测成本高和误差较大的缺点,以及分类再回归方法中分类时缺乏可指导性标准的问题,本文提出了基于支持向量机的先聚类、再回归的时间序列的预测方法.对机场噪声时间序列的先聚类再回归方法,采用常用k均值划分算法,利用聚类特点,将样本限定在同一类的范围内,再对同类样本进行回归预测.Housing及Laser generated data数据集上的实验表明,采用先聚类再回归方法得到的拟合值比直接回归方法得到的拟合值要精确.将该方法应用到北京某机场实测数据中,并与其他预测模型进行对比,准确度明显优于其他预测方法.
推荐文章
一种基于Normal矩阵的时间序列聚类方法
时间序列聚类
社团结构
复杂网络
Normal矩阵
相似度
基于局部线性嵌入的时间序列聚类
时间序列聚类
维数约简
主成分分析
分段聚合近似
局部线性嵌入
支持向量回归机在铁路客运量时间序列预测中的应用
铁路客运量
ε支持向量回归机
人工神经网络
时间序列预测
KPCA-LSSVM方法在视频时间序列预测中应用
时间序列预测
交通流量
视频流量
核主成分分析
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 聚类再回归方法在机场噪声时间序列预测中的应用
来源期刊 数据采集与处理 学科 工学
关键词 支持向量机 时间序列 机场噪声 聚类 回归
年,卷(期) 2014,(1) 所属期刊栏目
研究方向 页码范围 152-156
页数 5页 分类号 TP399
字数 3687字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王建东 南京航空航天大学计算机科学与技术学院 158 1573 21.0 31.0
2 张霞 南京航空航天大学计算机科学与技术学院 12 40 3.0 5.0
3 王丽娜 南京航空航天大学计算机科学与技术学院 10 60 4.0 7.0
4 夏利 南京航空航天大学计算机科学与技术学院 2 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (22)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (21)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(9)
  • 引证文献(0)
  • 二级引证文献(9)
2019(8)
  • 引证文献(0)
  • 二级引证文献(8)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
时间序列
机场噪声
聚类
回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
论文1v1指导