This paper describes an approximated-scalar-sign-function-based anti-windup digital control design for analog nonlinear systems subject to input constraints. As input saturation occurs, the non-smooth saturation constraint is modeled with the approximated scalar sign function which is a smooth nonlinear function. The resulting nonlinear model is further linearized at any operating point with the optimal linearization technique, and Linear Quadratic Regulator (LQR) is then applied for a state-feedback controller optimal for each operating point. As input saturation is encountered, an iterative procedure is developed to adjust control gains by systematically updating LQR weighting matrices until the inputs lie within the saturation limits. Through global digital redesign, the analog LQR controller is converted to an equivalent digital one for keeping the essential control performance, and moreover, delay compensation is taken into account during digital redesign for compensating the potential time delays in a control loop. The swing-up and stabilization control of single rotary inverted pendulum system is used to illustrate and verify the proposed method.