基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
使用向量空间模型表示的文本邮件数据高维而稀疏,不利于邮件过滤分类模型的建立,通常需在分类器训练前进行维数约减。Lasso回归是一种基于l1正则化的多元线性模型,其在模型参数估计的同时实现了变量选择。提出使用Lasso回归进行垃圾邮件过滤,建立Lasso回归邮件分类模型、Lasso回归词条选择结合逻辑回归的分类模型,结合中文文本垃圾邮件数据集TREC06C进行垃圾邮件过滤实验。实验结果表明Lasso回归词条选择结合逻辑回归的邮件分类模型性能更佳。
推荐文章
基于事例推理的中文垃圾邮件过滤
垃圾邮件过滤
实例推理
预计算实例检索网络
基于模糊支持向量机的中文垃圾邮件过滤方法
垃圾邮件
支持向量机
模糊支持向量机
模糊隶属度
隶属度函数
基于图正则化MNMF的中文垃圾邮件过滤
向量空间模型
维数约减
最大间隔Semi-NMF
图正则化MNMF
中文垃圾邮件过滤
基于KNN-SVM的垃圾邮件过滤模型
垃圾邮件
模式识别提取
K近邻算法
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于套索(Lasso)的中文垃圾邮件过滤
来源期刊 华东交通大学学报 学科 工学
关键词 中文文本邮件 垃圾邮件 过滤 Lasso 逻辑回归
年,卷(期) 2014,(4) 所属期刊栏目 学科交叉
研究方向 页码范围 130-135
页数 6页 分类号 TP391
字数 3547字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘遵雄 华东交通大学信息工程学院 59 330 10.0 15.0
2 徐征 华东交通大学电气与电子工程学院 19 115 6.0 10.0
3 张贤龙 华东交通大学信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (15)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
中文文本邮件
垃圾邮件
过滤
Lasso
逻辑回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东交通大学学报
双月刊
1005-0523
36-1035/U
大16开
中国南昌
1984
chi
出版文献量(篇)
3963
总下载数(次)
12
总被引数(次)
24304
论文1v1指导