基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统BP神经网络收敛速度慢、易陷入局部极小等问题,采用Matlab神经网络工具箱中的自适应学习率VLBP算法和基于数值优化技术的LMBP算法对传统BP神经网络算法进行改进,并设计了基于改进BP神经网络的煤与瓦斯突出预测系统;分别采用传统BP神经网络模型和改进的BP神经网络模型进行煤与瓦斯突出预测实验,结果表明改进的BP神经网络能够更快、更准确地预测煤与瓦斯突出.
推荐文章
基于BP和RBF神经网络的煤与瓦斯突出预测研究
BP神经网络
径向基神经网络
预测
煤与瓦斯突出
基于灰色关联熵的煤与瓦斯突出概率神经网络预测模型
煤与瓦斯突出
危险性预测
熵权法
灰色关联度分析
概率神经网络
基于RBF网络的煤与瓦斯突出预测研究
煤与瓦斯突出
RBF神经网络
减聚类算法
基于再生核RBF神经网络的瓦斯突出预测系统
再生核RBF神经网络
瓦斯突出
PCI总线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进BP神经网络的煤与瓦斯突出预测系统
来源期刊 工矿自动化 学科 工学
关键词 煤与瓦斯突出 突出预测 BP神经网络
年,卷(期) 2014,(5) 所属期刊栏目 实验研究
研究方向 页码范围 34-37
页数 4页 分类号 TD712.5
字数 语种 中文
DOI 10.13272/j.issn.1671-251x.2014.05.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王社国 19 98 6.0 9.0
2 张峰 6 3 1.0 1.0
3 田志民 7 8 2.0 2.0
4 武莎莎 4 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (104)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
煤与瓦斯突出
突出预测
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工矿自动化
月刊
1671-251X
32-1627/TP
大16开
江苏省常州市木梳路1号中煤科工集团常州自动化研究院内
28-162
1973
chi
出版文献量(篇)
6068
总下载数(次)
11
总被引数(次)
33991
论文1v1指导