基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
从数据集中学习贝叶斯网络结构是一个NP难问题。针对此问题提出基于遗传算子的人工蜂群算法。首先,将贝叶斯网络结构映射为一种二进制编码;其次,根据贝叶斯网络的结构特点,设计了蜜源的更新策略,从而将学习贝叶斯网络结构的过程转化为蜂群寻找最优蜜源的过程。实验结果表明,该算法应用于贝叶斯网络结构学习中的有效性。
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工蜂群算法的贝叶斯网络结构学习
来源期刊 智能系统学报 学科 工学
关键词 贝叶斯网络 NP难 人工蜂群算法 遗传算子 结构学习
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 325-329
页数 5页 分类号 TP181
字数 3810字 语种 中文
DOI 10.3969/j.issn.1673-4785.201310014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘三阳 西安电子科技大学数学与统计学院 662 5562 32.0 51.0
2 张平 西安电子科技大学数学与统计学院 23 514 12.0 22.0
3 朱明敏 西安电子科技大学数学与统计学院 10 175 5.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (11)
参考文献  (13)
节点文献
引证文献  (18)
同被引文献  (49)
二级引证文献  (61)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(7)
  • 引证文献(6)
  • 二级引证文献(1)
2016(12)
  • 引证文献(3)
  • 二级引证文献(9)
2017(11)
  • 引证文献(3)
  • 二级引证文献(8)
2018(27)
  • 引证文献(3)
  • 二级引证文献(24)
2019(19)
  • 引证文献(2)
  • 二级引证文献(17)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
贝叶斯网络
NP难
人工蜂群算法
遗传算子
结构学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导