基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在引入最大信息系数的基础上,提出一种改进的贝叶斯网络结构学习算法.在给定数据集的条件下,基于最大信息系数对变量间的关联度进行检测,根据筛选因子和关联度构造贝叶斯网络的初始化结构,并结合贪婪算法对初始网络结构进行局部优化,将局部最优解进行整合形成全局最优解,生成最终的网络结构.在Asia和Car基准网络上的实验结果表明,与基于传统贪婪算法、随机K2算法的贝叶斯网络结构学习算法相比,该算法可以学习到与基准网络更相近的贝叶斯网络结构,并且具有较高的正确边均值和分类准确率.
推荐文章
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最大信息系数的贝叶斯网络结构学习算法
来源期刊 计算机工程 学科 工学
关键词 贝叶斯网络 结构学习 最大信息系数 关联度 贪婪算法
年,卷(期) 2017,(8) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 225-230
页数 6页 分类号 TP311
字数 4738字 语种 中文
DOI 10.3969/j.issn.1000-3428.2017.08.038
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾安 广东工业大学计算机学院 32 150 8.0 11.0
2 杨海东 5 36 3.0 5.0
3 邓杰航 广东工业大学计算机学院 18 77 5.0 8.0
4 潘丹 3 14 2.0 3.0
5 曾千千 广东工业大学计算机学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (20)
参考文献  (10)
节点文献
引证文献  (5)
同被引文献  (2)
二级引证文献  (1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
最大信息系数
关联度
贪婪算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导