基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于合成孔径雷达(Synthetic aperture radar,SAR)图像的地面车辆目标自动检测是一项重要的SAR军事应用研究.提出一种基于区域的广义似然比法(Generalized likelihood ratio test,GLRT)的目标检测方法,该方法将GLRT目标检测理论与图像分割技术相结合.首先利用普通图像常用的分割聚类方法从SAR图像场景中粗略地分离出陆地杂波区域和目标潜在区域.然后根据分割结果,分别对两区域数据建立合理的统计模型.最后在背景和目标统计特性都已知的情况下,采用GLRT目标检测方法对目标潜在区域的像素点进行逐一检测,获得更为精确的检测结果.对实际SAR数据处理的结果表明,该方法能有效地从陆地场景中检测出地面车辆目标,且具备一定的精确性和快速性.
推荐文章
基于对称FAST特征的车辆目标检测方法
车辆检测
对称特征
FAST特征点
特征描述
阴影特征
基于区域纹理的运动目标检测方法
运动目标检测
区域纹理
混合高斯模型
多模态均值
运动历史
基于改进混合高斯模型的车辆多目标检测方法
图像处理
多目标检测
混合高斯模型
形态学算法
基于深度学习方法的复杂场景下车辆目标检测
深度学习
Faster R-CNN
ImageNet数据集
车辆目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于区域的GLRT车辆目标检测方法
来源期刊 南京航空航天大学学报 学科 工学
关键词 SAR图像 车辆目标检测 图像分割 统计模型 广义似然比法
年,卷(期) 2014,(6) 所属期刊栏目
研究方向 页码范围 931-937
页数 7页 分类号 TP753
字数 4550字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周鑫 南京航空航天大学自动化学院 31 289 9.0 16.0
2 赵永辉 南京航空航天大学自动化学院 25 203 6.0 13.0
3 彭荣鲲 南京航空航天大学自动化学院 5 45 4.0 5.0
4 王沛 南京航空航天大学自动化学院 3 20 3.0 3.0
5 琚映云 南京航空航天大学自动化学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (24)
参考文献  (12)
节点文献
引证文献  (4)
同被引文献  (6)
二级引证文献  (1)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
SAR图像
车辆目标检测
图像分割
统计模型
广义似然比法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京航空航天大学学报
双月刊
1005-2615
32-1429/V
大16开
南京市御道街29号1016信箱
28-140
1956
chi
出版文献量(篇)
3509
总下载数(次)
9
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导