基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于粒子群优化算法的BP神经网络图像复原方法。 BP神经网络具有很强的学习和泛化能力,可避免传统复原方法对先验知识的依赖性,粒子群算法的全局寻优能力弥补了BP算法对初始权值敏感、收敛速度慢和易陷入局部极小值等问题,将两者结合形成PSO-BP算法,使得图像复原的难度大大下降。实验表明,该方法对模糊图像的复原性能很好,收敛速度快,在视觉和定量分析上都获得了较好的效果。
推荐文章
基于BP神经网络的雾天图像复原算法
雾天图像
图像复原
神经网络
粒子群优化算法
基于BP神经网络的雾天图像复原算法
雾天图像
图像复原
神经网络
粒子群优化算法
基于调和模型的快速神经网络图像复原算法
图像复原
神经网络
调和模型
去模糊
基于灰狼算法的BP神经网络图像恢复算法
灰狼优化算法
BP神经网络
图像恢复
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法的BP神经网络图像复原
来源期刊 无线电工程 学科 工学
关键词 图像复原 退化图像 BP神经网络 粒子群优化算法
年,卷(期) 2014,(10) 所属期刊栏目 信息系统与网络
研究方向 页码范围 5-7,26
页数 4页 分类号 TP391
字数 3103字 语种 中文
DOI 10.3969/j.issn.1003-3106.2014.10.02
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李钊 60 246 7.0 12.0
2 胡双演 32 155 7.0 10.0
3 王建平 3 26 2.0 3.0
4 杨亚威 9 47 4.0 6.0
5 孙胜永 5 36 3.0 5.0
6 张姣 5 28 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (27)
参考文献  (9)
节点文献
引证文献  (12)
同被引文献  (53)
二级引证文献  (35)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(6)
  • 参考文献(5)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(5)
  • 引证文献(4)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(16)
  • 引证文献(2)
  • 二级引证文献(14)
2019(17)
  • 引证文献(2)
  • 二级引证文献(15)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
图像复原
退化图像
BP神经网络
粒子群优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线电工程
月刊
1003-3106
13-1097/TN
大16开
河北省石家庄市174信箱215分箱
18-150
1971
chi
出版文献量(篇)
5453
总下载数(次)
12
总被引数(次)
20875
论文1v1指导