针对模式识别新方法VPMCD(variable predictive model based class discriminate)在参数估计过程中存在的缺陷,对VPMCD方法进行了改进,用主成分估计法代替原方法中的最小二乘法进行参数估计,消除了预测变量间存在多重线性相关性的影响,可以获得更加稳定的模型参数,从而提高模式识别的精度.采用局部特征尺度分解(LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取各分量的近似熵组成故障特征向量作为改进VPMCD的输入,以改进VPMCD作为分类器对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障和滚动体故障四种不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明该方法有效.