原文服务方: 中国机械工程       
摘要:
针对模式识别新方法VPMCD(variable predictive model based class discriminate)在参数估计过程中存在的缺陷,对VPMCD方法进行了改进,用主成分估计法代替原方法中的最小二乘法进行参数估计,消除了预测变量间存在多重线性相关性的影响,可以获得更加稳定的模型参数,从而提高模式识别的精度.采用局部特征尺度分解(LCD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,提取各分量的近似熵组成故障特征向量作为改进VPMCD的输入,以改进VPMCD作为分类器对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障和滚动体故障四种不同工作状态和故障类型下的滚动轴承振动信号进行了分析,结果表明该方法有效.
推荐文章
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
基于变量预测模型的模式识别方法在滚动轴承故障诊断中的应用
模式识别
故障诊断
变量预测模型
滚动轴承
WVPMCD及其在滚动轴承故障诊断中的应用
WVPMCD
局部特征尺度分解
加权最小二乘
滚动轴承
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进VPMCD方法在滚动轴承故障诊断中的应用
来源期刊 中国机械工程 学科
关键词 改进VPMCD 局部特征尺度分解 主成分估计 滚动轴承 故障诊断
年,卷(期) 2014,(4) 所属期刊栏目 信息技术
研究方向 页码范围 491-496
页数 6页 分类号 TH113
字数 语种 中文
DOI 10.3969/j.issn.1004-132X.2014.04.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨宇 湖南大学汽车车身先进设计制造国家重点实验室 170 5200 44.0 68.0
2 李杰 湖南大学汽车车身先进设计制造国家重点实验室 20 129 5.0 11.0
3 程军圣 湖南大学汽车车身先进设计制造国家重点实验室 210 5603 44.0 69.0
4 潘海洋 湖南大学汽车车身先进设计制造国家重点实验室 20 120 6.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (105)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(3)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
改进VPMCD
局部特征尺度分解
主成分估计
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国机械工程
月刊
1004-132X
42-1294/TH
大16开
湖北省武汉市洪山区南李路湖北工业大学
1990-01-01
中文
出版文献量(篇)
13171
总下载数(次)
0
总被引数(次)
206238
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导