作者:
原文服务方: 计算机测量与控制       
摘要:
针对以往故障诊断模型往往忽略故障数据中存在的大量无关和冗余信息以及故障诊断精度不高的缺点,设计了一种基于粗糙集(Rough Set,RS)和离散小波变换(Discrete Wavelet transform,DWT)-支持向量机(Support Vector Machine,SVM)的模拟电路故障诊断方法;首先,采用离散小波变换获取电路故障诊断特征向量以去除无关信息;然后通过基于RS属性出现频率的差别矩阵算法对特征向量进行属性约简以消除冗余属性;最后,建立多分类的SVM对电路进行分类以实现故障诊断,为了进一步提高故障诊断精度,采用改进免疫优化算法(Immune Optimizing Algorism,IOA)对SVM核函数的各参数进行优化;仿真实验表明,文中方法能有效实现电路的故障诊断,与其它方法相比,故障精度高达100%,是一种有效的电路诊断方法.
推荐文章
基于Treelet变换的模拟电路故障诊断
模拟电路
故障诊断
特征提取
Treelet变换
基于CPLD和BP算法的模拟电路故障诊断
故障诊断
模拟电路
BP神经网络
CPLD
模拟电路软故障诊断的研究
模拟电路
软故障诊断
故障字典法
节点电压增量关系方程
模糊神经网络
小波神经网络
网络撕裂法
模拟电路故障诊断的研究
模拟电路故障诊断
网络理论
测前模拟
测后模拟
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RS和DWT-IOSVM的模拟电路故障诊断
来源期刊 计算机测量与控制 学科
关键词 模拟电路 支持向量机故障诊断 粗糙集
年,卷(期) 2014,(3) 所属期刊栏目 自动化测试技术
研究方向 页码范围 697-699,708
页数 4页 分类号 TP306
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑晓菁 安徽理工大学电气与信息工程学院 7 19 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (77)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(10)
  • 参考文献(3)
  • 二级参考文献(7)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模拟电路
支持向量机故障诊断
粗糙集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导