基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
概率假设密度滤波器将目标的状态空间及观测空间描述为随机有限集合的形式,有效避免了多目标跟踪中复杂的数据关联问题。但对于不同类型的目标使用同样的全部观测数据集进行目标状态更新,未对观测数据进行合理分配,导致估计性能下降。该文提出一种观测最优分配的高斯混合概率假设密度多目标跟踪算法(MOA-GM-PHD),将目标分为已有目标和新生目标两类,推导极大似然门限来获得两类目标对应的最优观测数据,再分别进行目标状态更新。实验结果表明,该文方法目标跟踪效果优于传统GM-PHD滤波器。
推荐文章
GM-PHD雷达密集多目标跟踪应用研究
数据关联
密集多目标跟踪
最优多目标贝叶斯滤波器
高斯混合概率假设密度
多普勒盲区下基于GM-PHD的雷达多目标跟踪算法
多普勒盲区
最小可检测速度
多普勒信息
高斯混合概率假设密度
基于GM-PHD的多目标跟踪算法仿真及影响因素
高斯混合概率假设密度滤波器
检测概率
存活概率
杂波密度
最优子模式分配距离
基于权重约束GM-PHD滤波的多目标跟踪方法
多目标跟踪
一对一假设
高斯混合概率假设密度滤波器
权重约束
归一化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 观测最优分配的GM-PHD多目标跟踪算法
来源期刊 信号处理 学科 工学
关键词 多目标跟踪 高斯混合概率假设密度滤波器 观测最优分配
年,卷(期) 2014,(12) 所属期刊栏目 论文与技术报告
研究方向 页码范围 1419-1426
页数 8页 分类号 TP391
字数 5304字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴仁彪 中国民航大学天津市智能信号与图像处理重点实验室 195 1158 14.0 22.0
2 章涛 中国民航大学天津市智能信号与图像处理重点实验室 15 63 5.0 7.0
4 陈敏 中国民航大学天津市智能信号与图像处理重点实验室 10 14 2.0 3.0
7 来燃 中国民航大学天津市智能信号与图像处理重点实验室 4 11 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (10)
参考文献  (7)
节点文献
引证文献  (10)
同被引文献  (12)
二级引证文献  (24)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(5)
  • 引证文献(4)
  • 二级引证文献(1)
2017(6)
  • 引证文献(2)
  • 二级引证文献(4)
2018(14)
  • 引证文献(3)
  • 二级引证文献(11)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
多目标跟踪
高斯混合概率假设密度滤波器
观测最优分配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导