基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了充分利用参考彩色图像与待处理灰度图像的关联关系,进一步提高图像颜色重建的自动化程度,利用稀疏表示理论和字典学习方法,提出一种自动全局图像着色算法.首先利用图像亮度、特征信息、图像颜色信息之间的相关性,依据参考图像训练出一个亮度-特征-颜色的联合字典;然后利用目标灰度图像的亮度和特征信息计算出其在该字典下的稀疏表示系数;最后利用上述联合字典与计算得到的稀疏表示系数进行灰度图像的颜色信息重建.文中算法无需进行图像分割,针对整幅图像进行着色,是一种自动的全局算法.实验结果表明,该算法可以有效地对灰度图像进行着色,对于色调单一的图像,着色效果更好.
推荐文章
一种基于K-均值分类稀疏表示的灰度图像颜色重建方法
颜色重建
稀疏表示
K-均值
残差补偿
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于双字典和稀疏表示的医学图像超分辨率重建
医学图像
超分辨率
稀疏表示
字典学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于字典学习与稀疏表示的灰度图像颜色重建算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 图像处理 颜色重建 稀疏表示 字典学习 压缩感知
年,卷(期) 2014,(7) 所属期刊栏目 图像与视觉
研究方向 页码范围 1092-1098,1108
页数 8页 分类号 TN911.7
字数 5910字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 岑翼刚 北京交通大学信息科学研究所 15 101 6.0 9.0
2 赵瑞珍 7 171 6.0 7.0
3 胡绍海 5 142 4.0 5.0
4 张勋 北京交通大学信息科学研究所 2 18 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (3)
参考文献  (13)
节点文献
引证文献  (17)
同被引文献  (26)
二级引证文献  (28)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(3)
  • 二级参考文献(4)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(5)
  • 引证文献(3)
  • 二级引证文献(2)
2017(12)
  • 引证文献(7)
  • 二级引证文献(5)
2018(8)
  • 引证文献(3)
  • 二级引证文献(5)
2019(13)
  • 引证文献(3)
  • 二级引证文献(10)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
图像处理
颜色重建
稀疏表示
字典学习
压缩感知
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
总被引数(次)
94943
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导