基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标表观变化的处理是视觉跟踪领域极具挑战性的问题,该文针对这一问题,在粒子滤波框架下提出一种高效的基于超像素的L1跟踪方法(SuperPixel-L1 tracker, SPL1)。首先利用具有结构性信息的中层视觉线索(超像素)构造字典来对目标的表观建模;然后求解由粒子表示的候选目标状态的 L1范数最小化,把重构误差最小的候选状态作为跟踪的结果;最后进一步改进了字典的在线更新策略,不论目标发生遮挡与否,字典都被学习更新;为了降低目标发生漂移的可能,更新时保留初始帧的信息。仿真结果验证了SPL1在目标发生长时间遮挡、尺度和光照变化时依然能够稳定地跟踪目标。
推荐文章
基于稀疏表示超像素分类的肿瘤超声图像分割算法
稀疏表示
超声图像
肿瘤分割
简单线性迭代聚类
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
基于超像素与BoF的运动目标跟踪算法
目标跟踪
表观模型
中层视觉线索
超像素
BoF
粒子滤波框架
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 稀疏表示的超像素在线跟踪
来源期刊 电子与信息学报 学科 工学
关键词 视觉跟踪 在线学习 表观变化 稀疏表示 超像素
年,卷(期) 2014,(10) 所属期刊栏目 论文
研究方向 页码范围 2393-2399
页数 7页 分类号 TP391
字数 4988字 语种 中文
DOI 10.3724/SP.J.1146.2013.01784
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴镇扬 东南大学信息科学与工程学院 167 1889 20.0 37.0
2 周琳 东南大学信息科学与工程学院 39 136 7.0 9.0
3 程旭 东南大学信息科学与工程学院 9 56 5.0 7.0
4 李拟珺 东南大学信息科学与工程学院 7 25 4.0 5.0
5 周同驰 东南大学信息科学与工程学院 5 29 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (9)
同被引文献  (9)
二级引证文献  (15)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(7)
  • 引证文献(2)
  • 二级引证文献(5)
2018(5)
  • 引证文献(1)
  • 二级引证文献(4)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
视觉跟踪
在线学习
表观变化
稀疏表示
超像素
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导