作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前网络上的重要应用都是围绕对用户兴趣的研究和发现而展开和完善的,主要的方式是借助于对用户的Web访问数据进行相关挖掘。该研究主要是通过建立一个从底层数据获取到上层数据处理的原型系统,对真实捕获的网络数据利用小世界网络模型提取中文文档关键字后处理为用户兴趣,再将用户的访问兴趣通过隐马尔可夫模型抽象成一种时间序列,依次反映用户兴趣的序列性,从而利用GSP算法得到用户的兴趣并供后续处理。实验证明,该原型系统从数据获取到最终处理,可以得到比较满意的结果。
推荐文章
基于发文内容的微博用户兴趣挖掘方法研究
微博
发文内容
兴趣挖掘
主题短语模型
知识库
基于文本聚类与兴趣衰减的微博用户兴趣挖掘方法
微博
single-pass聚类
LDA模型
用户兴趣挖掘
兴趣衰减
微博中结合转发特性的用户兴趣话题挖掘方法
微博
用户
兴趣转发
跟随转发
主题模型
基于分类技术的Blog用户兴趣挖掘
Blog
内容挖掘
Blog搜索
中心向量法
kNN算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 网络用户兴趣的智能挖掘方法研究
来源期刊 计算机技术与发展 学科 工学
关键词 兴趣挖掘 文本聚类 智能算法
年,卷(期) 2014,(2) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 76-78,83
页数 4页 分类号 TP301
字数 2391字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.02.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马力 81 732 15.0 24.0
2 李培 17 32 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (122)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(2)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
兴趣挖掘
文本聚类
智能算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导