基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高AdaBoost算法的检测准确率和解决AdaBoost算法的退化问题,提出了一种基于线性不对称分类器(LAC)的改进AdaBoost人脸检测算法.该算法对样本权重的更新规则进行了调整,当训练节点分类器的前m个弱分类器时,由于样本权重更新合理,采用原始权重更新方法;当已训练产生一定数量的弱分类器序列后,退化问题严重,由LAC算法对前期训练获得的弱分类器序列进行学习形成最优强分类器,计算该强分类器对负样本集的错分率FPR,更新样本权重,依次循环直到完成该节点所有弱分类器的训练并得到最佳节点分类器,最后通过级联各个节点分类器,构成人脸检测分类器.同时,对已有的Haar特征进行了改进和完善.实验结果表明,该方法不仅提高了检测精度,而且抑制了退化现象,使人脸检测分类器的性能得到进一步的提高,具有较大的实用价值.
推荐文章
一种新的快速多人脸检测算法
人脸检测
肤色模型
距离变换
基于普通样本的Adaboost人脸检测算法
AdaBoost
人脸检测
权值更新
普通样本
MSSFD—一种递进式人脸检测算法
人脸检测
背景消减
运动检测
肤色分割
SVM
基于改进Adaboost算法的人脸识别系统设计
嵌入式软件
Adaboost
VIPLFaceNet
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的AdaBoost人脸检测算法
来源期刊 电视技术 学科 工学
关键词 AdaBoost算法 人脸检测 线性不对称分类器 Haar特征
年,卷(期) 2014,(15) 所属期刊栏目 视频应用与工程
研究方向 页码范围 207-212
页数 6页 分类号 TN911.73|TP391.4
字数 6047字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈泽华 太原理工大学信息工程学院 48 362 9.0 17.0
2 李文昊 太原理工大学信息工程学院 3 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (69)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (13)
二级引证文献  (14)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(6)
  • 引证文献(3)
  • 二级引证文献(3)
2018(6)
  • 引证文献(1)
  • 二级引证文献(5)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
AdaBoost算法
人脸检测
线性不对称分类器
Haar特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导