基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在脑-机接口的研究中,针对运动想象的两种思维任务的脑电信号的特征提取,提出了一种基于小波包变换的特征提取方法。该方法利用想象运动中,脑电信号Mu/Beta节律事件相关同步化/去同步化特性,采用BCI2003竞赛数据,输入Matlab的Classify分类函数进行分类,正确率达到88.57%。
推荐文章
基于ABC-SVM的运动想象脑电信号模式分类
脑电信号
人工蜂群算法
支持向量机
正则化共空间模式
模式分类
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于AR模型的小波变换在脑电信号消噪中的应用
自回归模型
小波变换
脑电信号
消噪
一种基于小波变换的脑电信号处理的新方法
小波变换
脑电信号
瞬态信号处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波变换的运动想象脑电信号分类1
来源期刊 数字技术与应用 学科 工学
关键词 脑-机接口 特征提取与分类 Mu/Beta节律 小波包变换
年,卷(期) 2014,(8) 所属期刊栏目 应用研究
研究方向 页码范围 90-90
页数 1页 分类号 TP391
字数 1209字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李振新 29 71 4.0 6.0
2 于毅 46 69 4.0 5.0
3 董兵超 17 40 3.0 5.0
4 赵云 6 26 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (6)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑-机接口
特征提取与分类
Mu/Beta节律
小波包变换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
论文1v1指导