作者:
原文服务方: 计算机测量与控制       
摘要:
根据织物检测的实际情况需要,提出了基于差分盒算法的改进算法,在使用Brodatz纹理库样本的前提下,分别在盒子高度确定、盒子总数统计以及网格中盒子数量确定3个方面进行改进,在算法时间和精度两项上,对经典差分盒算法和改进算法进行了比较,对比得出了改进算法的时效性;还应用了改进差分盒算法对3种常见纹理的疵点织物进行了计算,以确认疵点织物,并验证了改进差分盒算法;实验通过检出率、误检率、漏检率和检测精度4个检测精度参数表明,改进的差分盒算法可以有效地区分疵点织物和正常织物,该方法具有很强的实用性.
推荐文章
基于计算机视觉的织物疵点自动检测
小波分析
BP神经网络,织物疵点
机顶盒硬件自动检测功能设计
广电运营商
机顶盒
自动检测
基于改进的帧差法和Mean-shift结合的运动目标自动检测与跟踪
目标检测
帧差法
目标跟踪
Mean-shift算法
基于DSP和图像分割的织物疵点实时检测方法
织物图像
疵点
自适应阈值
分割
实时检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进差分盒算法的织物疵点自动检测方法
来源期刊 计算机测量与控制 学科
关键词 差分盒 纹理图像 机器视觉 分形维数
年,卷(期) 2014,(6) 所属期刊栏目 自动化测试技术
研究方向 页码范围 1676-1679
页数 4页 分类号 TP751
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹文梁 东莞职业技术学院计算机工程系 40 111 6.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (53)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (10)
二级引证文献  (4)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
差分盒
纹理图像
机器视觉
分形维数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导