基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
稀疏保留投影是一种有效的特征提取方法,但是其主要关注样本间的全局稀疏重构关系,并且得到的投影变换通常不是正交的。在实际应用中,图像数据往往处于高维空间中的一种低维流形中,正交性一直被认为有利于提高鉴别能力。文中以有监督学习的方式在稀疏保留投影中引入了流形结构保留,并使得投影空间正交,从而提出了一种新的特征提取方法,即基于流形学习的整体正交稀疏保留鉴别分析( MLHOSDA)。在人脸和掌纹图像数据库的实验结果表明此方法具有较好的识别效果。
推荐文章
基于流形学习的正交稀疏保留投影鉴别分析
特征提取
流形学习
稀疏保留投影
正交
鉴别
终止准则
基于流形学习的正交稀疏保留投影
人工智能
人脸和掌纹图像特征提取
流形学习
正交稀疏保留投影
子空间学习
稀疏回归和流形学习的无监督特征选择算法
无监督学习
特征选择
稀疏回归
特征流形学习
基于核融合的多信息流形学习算法
核融合
流形学习
多信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于流形学习的整体正交稀疏保留鉴别分析
来源期刊 计算机技术与发展 学科 工学
关键词 特征提取 流形学习 稀疏保留投影 有监督学习 整体正交 人脸和掌纹图像
年,卷(期) 2014,(6) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 63-66
页数 4页 分类号 TP181
字数 3517字 语种 中文
DOI 10.3969/j.issn.1673-629X.2014.06.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 荆晓远 南京邮电大学自动化学院 52 99 5.0 6.0
2 姚永芳 南京邮电大学自动化学院 16 20 2.0 2.0
3 吴飞 南京邮电大学自动化学院 33 90 5.0 7.0
4 李文倩 南京邮电大学自动化学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (83)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (4)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
特征提取
流形学习
稀疏保留投影
有监督学习
整体正交
人脸和掌纹图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导