基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着信息技术的不断发展,数据挖掘在我们的工作和生活中的应用也越来越广泛,目前聚类算法在数据挖掘中则是一个热点研究领域.本文深入研究了现阶段比较成熟的几种聚类算法,总结了这些算法的优缺点以及适用范围,提出用来评价聚类算法性能优劣的指标,也是今后聚类算法研究的出发点.
推荐文章
数据挖掘中聚类算法研究
数据挖掘
聚类
SOM
数据挖掘中的聚类算法综述
数据挖掘
聚类
聚类算法
基于数据挖掘的聚类算法研究
聚类
数据挖掘
支持向量聚类
云计算中基于群体智能算法的大数据聚类挖掘
云计算
群体智能算法
大数据挖掘
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 数据挖掘中聚类算法的研究
来源期刊 网络安全技术与应用 学科 工学
关键词 聚类算法 数据挖掘技术 评价指标
年,卷(期) 2014,(1) 所属期刊栏目 技术·应用
研究方向 页码范围 65-66
页数 2页 分类号 TP18
字数 2273字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 覃艳 四川科技职工大学信息与管理工程系 25 82 3.0 8.0
2 周全华 四川科技职工大学信息与管理工程系 8 32 2.0 5.0
3 王洪 四川科技职工大学信息与管理工程系 4 24 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (123)
参考文献  (6)
节点文献
引证文献  (21)
同被引文献  (29)
二级引证文献  (38)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2014(4)
  • 引证文献(4)
  • 二级引证文献(0)
2015(4)
  • 引证文献(3)
  • 二级引证文献(1)
2016(8)
  • 引证文献(6)
  • 二级引证文献(2)
2017(12)
  • 引证文献(3)
  • 二级引证文献(9)
2018(15)
  • 引证文献(3)
  • 二级引证文献(12)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
聚类算法
数据挖掘技术
评价指标
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导