作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文首先对客户细分理论、聚类分析与K-means算法进行了阐述与分析,然后运用实例分析完成了对K-Means聚类算法在电子商务客户细分中应用的研究。通过本文的研究来识别、分析电子商务的客户信息,从客户信息中挖掘出潜在知识,对客户进行分类管理,为电子商务企业了解客户、挖掘潜在客户、实现差异化营销提供有力的帮助,同时为聚类技术在电子商务客户细分中的应用研究提供一些新思路。
推荐文章
改进K-means算法在B2C电子商务客户细分中的应用
数据挖掘
K-means算法
客户细分
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means算法的电子商务客户细分研究
来源期刊 时代金融(中旬) 学科
关键词 客户细分 聚类分析 K-means算法
年,卷(期) 2014,(8) 所属期刊栏目 工作研究
研究方向 页码范围 226-227
页数 2页 分类号
字数 3495字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢丹丹 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (9)
二级引证文献  (5)
1956(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
客户细分
聚类分析
K-means算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
时代金融(中旬)
月刊
chi
出版文献量(篇)
16325
总下载数(次)
37
总被引数(次)
31851
论文1v1指导