为了探索语义相似度在中文实体关系抽取上的作用,提出由实体词在《同义词词林》中的5层编码构建成的《同义词词林》编码树和由关系实例中的实体词,各个类别中所有实体词计算相似度后求得的平均值构建成的实体词语义相似度树2种新特征,并连同已有的《同义词词林》编码、实体类型信息共4种特征探究其对抽取性能的影响。单一特征的试验中,实体类型特征效果最好,F 值达到了小类84.9、大类83.2;组合特征的试验中,实体类型和《同义词词林》编码树的组合特征效果最好,大类小类的 F 值都比实体类型特征提高了2.5,3种组合特征性能不升反降。试验结果表明《同义词词林》编码树是对实体类型的有效补充,但过多的特征会造成信息冗余,使抽取性能下降。