作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对交通流量数据具有非线性和非平稳性的特点,运用EMD和FOA算法实现LS-SVM核参数和惩罚系数的自适应优化选择,提出了一种基于EFLS-SVM算法的交通流量预测模型.通过EMD提取交通流量数据的细节特征和趋势特征,构建出基于EFLS-SVM的交通流量预测模型,分别进行单步、3步、5步和7步预测.通过不同交通流量预测模型的实验对比发现,EFLS-SVM算法的预测精度和预测效率均优于其他模型,从而为交通网络资源的合理配置提供科学决策的依据.
推荐文章
基于深度卷积神经网络的交通流量预测数学模型设计
交通流量预测
智能交通
数学模型
深度神经网络
预测精度
仿真实验
一种LS-SVM在线式短时交通流预测方法
短时交通流预测
统计学习
最小二乘支持向量机
在线式学习算法
滑动时间窗口
基于灰色关联的 LS-SVM道路交通事故预测
道路交通事故
预测
灰色关联分析
最小二乘支持向量机
动态改变惯性权重自适应粒子群算法
基于改进的LS-SVM地空导弹生存能力的预测
最小二乘支持向量机
特征加权
人工鱼群算法
地空导弹
生存能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的LS-SVM数学模型的交通流量预测分析
来源期刊 四川理工学院学报(自然科学版) 学科 工学
关键词 交通流量 果蝇优化算法 数学模型 最小二乘法支持向量机
年,卷(期) 2015,(6) 所属期刊栏目 机械、电子及计算机科学
研究方向 页码范围 29-35
页数 7页 分类号 TP391.1
字数 3026字 语种 中文
DOI 10.11863/j.suse.2015.06.07
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴一凡 江苏食品药品职业技术学院基础教学部 19 26 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (82)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通流量
果蝇优化算法
数学模型
最小二乘法支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川理工学院学报(自然科学版)
双月刊
1673-1549
51-1687/N
四川省自贡市汇兴路学苑街180号
chi
出版文献量(篇)
2774
总下载数(次)
3
总被引数(次)
12372
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导