作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近几十年来,随着传感器、无线通信、信息处理、计算机等相关技术的不断发展和创新,基于无线传感器网络的应用越来越广泛,对无线传感器网络中的目标跟踪算法进行研究也具有极大的现实意义.在研究滤波算法的基础上,针对粒子滤波算法中的粒子退化问题,考虑无迹粒子滤波中的重要性函数充分利用了当前观测值但是运行时间长的问题,提出一种在有效粒子数满足一定条件下进行无迹变换的方法,将先验分布和通过无迹卡尔曼方法得到的重要性函数相结合作为新的提议分布以减缓粒子的退化.对于粒子滤波中的样本贫化问题,提出一种改进的分类重采样方法,当粒子的多样性不足时,在大权值粒子上加一个以噪声方差控制的扰动并给予小权值粒子一定的被选概率,以此增加粒子的多样性,并以C++为仿真工具对所提方法进行了试验.结果表明,改进的粒子滤波算法在估计精度上优于标准粒子滤波和无迹粒子滤波,而且运行时间比无迹粒子滤波减小一半多.
推荐文章
粒子滤波实现无线传感器网络目标跟踪预测
无线传感器网络
目标跟踪
粒子滤波
预测
无线传感器网络下的粒子滤波分布式目标跟踪算法
传感器网络
目标跟踪
粒子滤波算法
粒子滤波在无线传感器网络目标追踪中的应用
无线传感器网络
粒子滤波
目标追踪
基于概率假设密度的无线传感器网络多目标跟踪算法
概率假设密度滤波
无线传感器网络
多目标跟踪
随机有限集
粒子滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 无线传感器网络中基于粒子滤波的目标跟踪算法研究
来源期刊 四川理工学院学报(自然科学版) 学科 工学
关键词 无线传感器网络 目标跟踪 粒子滤波
年,卷(期) 2015,(5) 所属期刊栏目 机械、电子及计算机科学
研究方向 页码范围 37-43
页数 7页 分类号 TB115
字数 5661字 语种 中文
DOI 10.11863/j.suse.2015.05.08
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑爱媛 5 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (110)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无线传感器网络
目标跟踪
粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川理工学院学报(自然科学版)
双月刊
1673-1549
51-1687/N
四川省自贡市汇兴路学苑街180号
chi
出版文献量(篇)
2774
总下载数(次)
3
总被引数(次)
12372
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导